
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 392

VHDL Implementation using Elliptic Curve Point

Multiplication

Ajay Kumar
1
, Kunal Lala

2
, Amit Kumar

3

M.Tech (EC) (4
th

SEM), Dept. of ECE , Krishna Institute of Engg & Tech,

Ghaziabad, India

1

M.Tech (EC) (4
th

SEM), Dept. of ECE , Krishna Institute of Engg & Tech,

Ghaziabad, India

2

Professor, Dept. of ECE , Krishna Institute of Engg & Tech,

Ghaziabad, India

3

ABSTRACT— This paper describes synthesizable VDHL implementation of elliptic curve Point Multiplication. Elliptic curves used for

ECC are defined over mathematical structures called Galois fields. Based on the theory of ECC, this paper has carried out Modular

addition/subtraction, EC Point doubling/addition, Modular multiplicative inversion, EC point multiplier, projective to affine coordinates

conversion. Importantly for cryptography, the elliptic curve point multiplication is the operation on which the security of every elliptic curve

cryptosystem relies on.

Keywords— Elliptic curve point addition, point doubling, Finite field arithmetic, Point multiplication, FPGA

I. INTRODUCTION

Since its proposal by Miller [1] and Kobliz [2] in the

mi1980s, elliptic curve cryptosystem (ECC) has recently

gained much attention in industry and academia. The main

reason is that for a properly chosen elliptic curve, no known

sub-exponential algorithm can be used to break the system

through the solution of the discrete logarithm problem. This

means that significantly smaller parameters can be used in

ECC than in other competitive systems such as RSA and

ElGamal with equivalent levels of security. Some benefits of

having smaller key sizes include reductions in processing

power, storage space, and bandwidth. Due to these many

advantages of ECC, a number of software [3, 4] and

hardware [5–13,22–24] implementations have been

proposed, and included in Many standards such as IEEE

1363[13] and NIST[14] .

As well known, software implementations can easily be

achieved on a general-purpose microprocessor. An operation

called point addition is defined on an elliptic curve. The

point addition is an operation, where two points on the curve

are added and a third point, which is also on the curve, is got.

Importantly for cryptography, it is very hard to tell which

two points were added. Furthermore, using consecutive

point additions, an operation called elliptic curve point

multiplication is defined. The most exorbitant finite field

operation for point addition and point doubling is the finite

field inversion. However, one way to handle finite field

inversion can be accomplished by transforming them into

less expensive finite field operation, such as finite field

addition and multiplication by using projective coordinates.

For implementations of ECC, finite fields GF(p) and GF (2
m
)

have been used, where p is a prime and m is a positive

integer. In particular, GF(2
m
), which is an m-dimensional

extension field of GF(2), is suitable for hardware

implementations because there is no carry propagation in

arithmetic operations. The most crucial operation in ECC is

the computation of point multiplication, i.e., computation of

kP for given integer k and point P on elliptic curve. There

are many available algorithms for the point multiplication.

Depending whether the given finite field is GF(2
m
) or

GF(p) ,or whether the given point P is fixed or random, an

ideal algorithm for computing kP may vary. However in the

case of binary field GF (2
m
), the López–Dahab algorithm [5]

is one of the most popular algorithms. In fact it is a natural

extension to binary case of so called Montgomery Ladder

Algorithm, which is especially suit-able for hardware

implementation because of the data independency of point

addition and point doubling. All the elliptic curve

cryptographic blocks are synthesized and simulated using

Xilinx ISE 13.3 with integrated ISim Simulator.

The reminder of this paper is organized as follows:

Section II describes basic Field Arithmetic behind ECC.

The considered components, Algorithms and their

implementation approaches are described in Section III.

Simulation results and performance evaluation are discussed

in section IV and section V concludes the paper.

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 393

II. METHODOLOGY

This approach demonstrates ECC Point Multiplication

structure of moderate gate count and high speed and is

organized as follows.

Point multiplication is the operation that dominates the

execution time of an Elliptic Curve Cryptographic protocol.

Implementation operation of point multiplication can be

separated into three distinct layers:

A. Point multiplication technique

B. Elliptic curve point addition & doubling

C. Finite Field Arithmetic

Operations involved in point multiplication have the

hierarchical formulation as shown in Fig.1 with point

multiplication techniques near the top and the fundamental

finite field arithmetic at the base. For Example one may

decide to implement ECDSA signature generation entirely

in hardware so that the only input to the device is the

message to be signed, and the only output is the signature

for that message.

Fig. 1: Hierarchy of operation in ECC

Point Multiplication is the basic computation primitive of
elliptic curve cryptography. The definition of corresponding
operations depends on a particular field, but they always
amount to combinations of arithmetic operation (add,
subtract, multiply, square and divide over the chosen field so
that software implantation is carried out. The scalar
multiplication is computed using Algorithm 1.

A. Point Multiplication

A basic operation of any elliptic curve cryptosystem is

an elliptic curve point multiplication given as

Q = kP = P+P+P+P+……+P (1)

Where P is a point on an elliptic curve E and k is an

integer in a range 1≤ k < order (P). Accordingly, the elliptic

curve point multiplication means that the point P is added to

itself k times. The order of the point P is n0 if and only if P

multiplied with n0 results in the point at infinity. This is

formally described as follows:

Order (P) = n0 ↔ n0P = O∞

The strength of an elliptic curve cryptosystem lies in the

fact that if E, Q and P are given, it is a very hard task to

recover k. This is a so called Elliptic Curve Discrete

Logarithm Problem (ECDLP).

 The integer k is usually very large and, therefore, it

would be way too slow to calculate Q just by adding P to

itself k times. Thus, efficient elliptic curve point

multiplication methods are needed. The simplest and oldest

of such methods is the binary method which is also known

as the double-and-add-method. The binary method relies on

the binary expansion of k. In a binary form, k is given as

and, therefore, l bits are needed to present k in the binary

form.

The scalar multiplication of the point P is computed using

the Algorithm 1.

Algorithm 1: Right-to-left binary method for point

multiplication

Input: k = (kl−1, k1, k0) in binary, P belongs to E (F(2
m
)).

Output: k*P

1. Q←∞

2. For i from 0 to l −1 do

3. If k (i) = 1 then Q←Q + P

4. P←2P

5. Return (Q)

There are several methods derived for efficient elliptic

curve point multiplication, many of which require pre

computations before the actual point multiplication. These

pre computations include calculations of intermediate points

which are then used for speeding up the point multiplication.

Certain methods use different representations of the integer

k, so that the number of operations during point

multiplication can be reduced.

B. Elliptic curve point addition & doubling

Consider the Koblitz curve: y2 + xy = x3 + x2 + 1

over GF (2) and the extension field L = GF (2
163

). A

polynomial representation based on the irreducible

polynomial

f(x)=x
163

+x
7
+x

6
+x

3
+1 (2)

will be used.

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 394

Point addition: Let P = (x1, y1) belongs to E (F2
m
) and Q=

(x2, y2) belongs to E (F2
m
), where P not equal to Q. Then P

+ Q = (x3, y3), where x3 = λ
2
+ λ + x1 + x2 + a and y3 =λ(x1 +

x3) + x3 + y1 with λ = (y1 + y2)/(x1 + x2).

Point doubling: Let P = (x1, y1) belongs to E (F2
m
), where P

= −P. Then 2P = (x3, y3), and x3 = λ
2

+ λ + a = x12 + b/x12

and y3 = x12 + λx3 + x3 with λ = x1+ y1/x1.

Fig. 2: Point Addition and Point Doubling

C. Finite Field Arithmetic

Fields are abstractions of familiar number systems (such

as the rational numbers Q, the real numbers R, and the

complex numbers C) and their essential properties. They

consist of a set F together with two operations, addition

(denoted by +) and multiplication (denoted by ·), that satisfy

the usual arithmetic properties. If the set F is finite, then the

field is said to be finite. A field F is equipped with two

operations, addition and multiplication. Subtraction of field

elements is defined in terms of addition and can be given as

i − j = i + (− j) where − j is the unique element in F such that

j + (− j) = 0 (− j is called the negative of j).Similarly,

division of field elements is defined in terms of

multiplication: with j = 0, i/j = i ·j
−1

 where j
−1

 is the unique

element in F such that j ·j
−1

 = 1 (
j−1

 is called the inverse of

j).Arithmetic unit shown in Fig.3 carries out these finite field

operations.

Fig. 3: Arithmetic unit Block diagram For ECC

Several field operations have been carried out and

described in details in next section with necessary circuitry

and mathematics.

III. IMPLEMENTATION APPROACH

The computation primitives for executing the elliptic-

curve operations are addition, multiplication, division,

inversion and squaring over GF (2
m
). The first one amounts

to the component-by-component addition of the

corresponding polynomials. The corresponding circuit is

made up of m XOR gates, and its computation time is equal

to 1 clock cycle. For multiplying, the generic interleaved

multiplier model can be used. For dividing, a simplified

version of binary divider, adapted to the case where p = 2, is

used.

A. Point Addition

 A data path for computing the following equation

λ = (y1 + y2)/(x1 + x2), x3 = λ
2

+ λ + x1 + x2 + 1 and y3 =λ(x1

+ x3) + x3 + y1 is shown below in fig 4.According to the

structure of the data path, the computation time is

approximately equal to

Tpoint-addition ≈ m (Tmod- f-product + Tmof-f-division) (3)

To summarize, doubling has been substituted by squaring, a

simple operation over a binary field.

Fig. 4: Point Addition

B. Interleaved Multiplier

The simplest algorithm for GF (2
m
) multiplication is the

shift and adds method with the reduction step interleaved.

Multiplication of two elements a(x), b(x) in GF (2
m
) can be

given as:

C(x) = a(x) b(x) mod f(x) = a(x)

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 395

= () mod f(x) (4)

Therefore, the product c(x) can be computer as

C(x) = (b0a(x) + b1a(x) x + b2a(x) x
2
 +......+ bm-1 a(x) x

m-1
)

mod f(x) (5)

In this approach Processing of bits of b(x) follows LSB to

MSB method. In a least-significant-bit (LSB) multiplier, the

coefficients of b(x) are processed starting from the least-

significant bit b0 and continue with the remaining

coefficients one at a time in ascending order. We have

implemented LSB first method because LSB first scheme is

faster than the MSB first scheme since in LSB first approach

c(x) and a(x) can be updated in parallel.

Thus multiplication according to this scheme is

performed in the following way:

c(x) = a(x)b(x) mod f(x)

= (b0 a(x) + b1 a(x)x + b2 a(x)x
2
+ ... bm-1 a(x)x

m-1
mod f(x)

= (b0 a(x) + b1(a(x)x) + b2(a(x)x
2

)+….bm-1(a(x)x
m-1

))mod

f(x)

= (b0 a(x) + b1(a(x)x) + b2(a(x)x)x

+….bm-1(a(x)x

m-2
)x)mod

f(x) (6)

Fig. 4 (a and b) depicts the data path for the binary version

of LSB first multiplier. It is important to note that in the

LSB and MSB first multiplication schemes, several

coefficients could be processed at each step.

(a)

(b)

Fig. 4: a and b Interleaved LSB-first multiplier

C. Squaring

A straight forward method for implementing field

squaring in GF (2
m
) using the multiplication algorithms with

only one input operand in order to perform c(x) = a(x)a(x)

mod f(x) that is, the operand b(x) is substituted by a(x).

MSB-first and LSB-first approaches for squaring can also be

given in a similar manner. Fig. 5 depicts the data path for

model for squaring which includes the component poly-

reducer.

Fig. 5: Classic squaring

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 396

D. Binary Division

The quotient of two polynomials in GF (2
m
) can be

computed using the binary version of the binary algorithm

that is used for calculation of gcd from required polynomials.

The binary algorithm for computing z(x) = g(x)h
-1

(x)

mod f(x) has been described as follows If p =2, it can be

simplified. Given two polynomials a(x) and b(x), if both are

divisible by x, that is, if a0 = b0 = 0, then gcd (a(x), b(x)) = x.

gcd(a(x)/x, b(x)/x); say b(x), is divisible by x(b0 = 0) and the

other is not (a0 ≠ 0), then gcd(a(x), b(x)) = gcd(a(x), b(x)/x);

if none of them is divisible by x then define a new

polynomial ab(x) = a(x) - a0 b0
-1

b(x), so that gcd(a(x), b(x))

= gcd(ab(x), b(x)) = gcd(ab(x), a(x)), and ab(x) is divisible

by x. The corresponding data path is shown in Fig. 6.

Fig. 6: Binary algorithm: data path

However based on computational similarities algorithm

used for binary division can also be used for computing

inversion as well. Additionally, the complete circuitry

includes additional integral part for accumulation and

updating the variables alpha and beta which includes a

control unit as well.

E. Point Multiplication

By combining all the above blocks we can implement

the point multiplication whose data path is represented in fig

7. The point-doubling operation can be avoided in the case

of the two following Koblitz curves over GF (2
m
):

E0 : y
2 + xy = x3 + 1 (7)

E1 : y
2 + xy = x3 + x2 + 1 (8)

For that define the Frobenius map τ from Ec (GF (2
m
)), with

c= 0 or 1:

τ (∞) = (∞) τ(x,y)=(x
2
,y

2
) (9)

It can be demonstrated that

2P = − τ
2
 (P) + μτ (P)

With μ= 1 if c= 1 and μ= − 1 if c= 0.

Thus the point-doubling operation amounts to squaring

operations in GF (2
m
) for computing τ(P) and τ

2
(P) and a

point addition.

Algorithm 2: τ -ary representation of k

1. a := k; b := 0; i := 0;

2. while a /= 0 or b /= 0 loop

3. if a mod 2 = 0 then r(i) := 0;

4. else r(i) := 2 – ((a – 2*b) mod 4);

5. end if;

6. old_a := a;

7. a := b + mu*(old_a – r(i))/2; b := (r(i) –

old_a)/2;

8. i := i+1;

9. end loop;

Regarding the maximum value of tin the particular case

where a= k and b= 0, it has been demonstrated that

t ≈ 2log2 k (10)

To summarize, doubling has been substituted by

squaring, a simple operation over a binary field.

Furthermore, among two successive coefficients ri. Thus,

according to Eq. (10.66), upper bounds of the number of

nonzero coefficients ri is given by

S ≈ log2 k ≈ m (11)

Thus, the computation of kP includes at most m

complex operations (adding or subtracting), and the total

computation time should be roughly half the computation

time of that of the basic algorithms.

In order to implement the preceding algorithm, an upper

bound of a and b must be known. It can be demonstrated

that

-2
m
 ≤ a < 2

m
 and -2

m-1
≤ b < 2

m-1
 (12)

So that a is an (m+ 1)-bit 2s complement number and b

an m-bit 2s complement number. A data path for executing

Algorithm is shown in Fig. 7.

According to Eqs. (10) And (11), their computation time for

point multiplication is approximately equal to

T ≈ mTpoint-addition ≈ m
2
(Tmod-f-product + Tmod-f-division) (13)

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 397

Fig. 7: Point multiplication

IV. EXPERIMENTAL RESULTS

We have synthesized and simulated the architecture for a

Xilinx Spartan XC3s400-4pq208 FPGA, using the ISE

13.3(nt) and ISim simulator.

Arithmetic units were synthesized for the Koblitz curve

recommended by NIST [14], for the finite field GF (2
m
)

using the irreducible polynomial f(x) = x
163

+x
7
+x

6
+x

3
+1.

Synthesis results for point addition and point multiplication

are summarized in table I and table II.
Simulation results by using ISim Simulator for point

addition and point multiplication are shown as waveform in
fig. 8 and fig. 9 respectively.

Fig. 8: Point Addition

Fig. 9: Point Multiplication

TABLE I

DEVICE UTILIZATION SUMMARY FOR POINT ADDITION

Logic Utilization Used (2163)

No. of slice FF 1176

No. of 4 input LUTs 1772

No. of occupied slices 944

No. of bounded IOBs 982

TABLE II

DEVICE UTILIZATION SUMMARY FOR POINT MULTIPLICATION

Logic Utilization Used (2163)

No. of slice FF 2163

No. of 4 input LUTs 3677

No. of occupied slices 2092

No. of bounded IOBs 819

V. CONCLUSION

 This paper presents an implementation of an Elliptic

Curve co-processor components, Point addition and Point

Multiplications. Future work will include considering more

efficient algorithms to perform the field arithmetic

operations, ITA for field Inversion. For the crypto-graphic

work, the time to perform the scalar multiplication can be

improved if projective coordinates are used to represent the

point of the curve and the Montgomery method is used to

compute the scalar multiplication.

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 6, August 2012

 Copyright to IJARCCE www.ijarcce.com 398

REFERENCES

[1] V.S. Miller, “Use of elliptic curves in cryptography,” in Proceedings

of the Advances in Cryptology, CRYPTO’85, pp. 417–426, 1986.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation 48, pp. 203–209, 1987.

[3] M. Rosing, “Implementing elliptic curve cryptography,” Manning,

1999.
[4] D. Hankerson, J. Hernandez and A. Menezes, “Software

implementation of elliptic curve cryptography over binary fields,”

Proceedings of the CHES 2000, Lecture Notes in Computer Science,
vol. 1965, pp. 1–24 , 2000.

[5] Julio López and Ricardo Dahab, “Fast Multiplication on Elliptic

Curves over GF(2m) Without Precomputation,” In CHES 99,
Proceedings of the First International Workshop on

Cryptographic Hardware and Embedded Systems, London, UK:

Springer-Verlag, pp. 316–327, 1999.

[6] G. Orlando, C. Parr, “A high-performance reconfigurable elliptic

curve processor for GF(2m),” in CHES 2000, Lecture Notes in

Computer Science, 1965.
[7] Steffen Peter and Peter Langendörfer. “An Efficient Polynomial

Multiplier in GF(2m) and its application to ecc designs,” In

DATE 07, Proceedings of the conference on Design, automation
and test in Europe, San Jose, CA, USA, 2007.

[8] Sabel Mercurio Henríquez Rodríguez et. Al, “An Fpga Arithmetic

Logic Unit for Computing Scalar Multiplication using the Half-
and-Add Method,” In ReConFig 2005 Washington, DC, USA.

[9] Francisco Rodríguez-Henríquez and Çetin Kaya Koç, “On Fully

Parallel Karatsuba Multipliers for GF(2m),” In Proc. of the
International Conference on Computer Science and Technology

(CST), pp. 405–410.

[10] Francisco Rodríguez-Henríquez et.al, “Parallel Itoh-Tsujii
Multiplicative Inversion Algorithm for a Special Class of

Trinomials,” Des. Codes Cryptography, pp. 19–37, 2007.

[11] André Weimerskirch and Christof Paar, “Generalizations of the
Karatsuba algorithm for Efficient Implementations,” Cryptology

ePrint Archive, Report 2006/224, 2006.

[12] N.A. Saqib, F. Rodríguez-Henríquez, A. Díaz-Pérezm, “A parallel

architecture for fast computation of elliptic curve scalar

multiplication over GF(2m),” in Parallel and Distributed Processing

Symposium (IPDPS), 2004.

[13] IEEE 1363, Standard Specifications for Public key Cryptography,
2000.

Biography

Ajay Kumar received his B.Tech Degree

from B.S.A. College of Engg. & Tech. ,

Mathura, India in 2009.

Currently he is a research Scholar at

Krishna Institute of Engg. & Technology,

Ghaziabad, India. His research interests are

in Computer Network security,

Cryptographic Algorithms (ECC), VLSI Design.

Kunal Lala received is B.Tech Degree

from Lord Krishna College of Engineering,

Ghaziabad in 2010. Currently he is a

research Scholar at Krishna Institute of

Engg. & Technology, Ghaziabad, India.

His research interests are in Computer

Network security, Cryptographic

Algorithms (AES), Computer Engineering.

Prof. Amit Kumar currently he is a

Professor at Department of Electronics &

Communication Engineering, Krishna

Institute of Engineering & Technology,

Ghaziabad. His research interests are in

VLSI design and Testing, Cryptographic

Algorithms (IDEA), Network Security.

http://www.ijarcce.com/

